DOI: http://dx.doi.org/10.18782/2320-7051.6438

ISSN: 2320 – 7051 *Int. J. Pure App. Biosci.* **6** (3): 70-76 (2018)

Research Article

Effect of Amla Powder and Turmeric Powder Consumption on Middle Aged (40-59 Years) Non-Insulin Dependent Diabetics

Priya Yadav^{*}, Ankita Gupta and Neeta Chopra

Institutional Adress: Dept. of Food and Nutrition, Institute of Home Science, Agra. *Corresponding Author E-mail: priyayadav6325@gmail.com Received: 26.04.2018 | Revised: 30.05.2018 | Accepted: 7.06.2018

ABSTRACT

Type 2 diabetes is a global crisis that threatens the health and economy of all nations, particularly developing countries. This epidemic is primarily driven by rapid urbanization, nutrition transition, and increasing sedentary lifestyle. The present study was conducted to study the effect of amla powder and turmeric powder consumption on middle aged (40-59 years) noninsulin dependent diabetics. Multistage random sampling technique was used in the present study. For sample selection door to door survey was conducted in Moti Katra and Sheetla Gali area of Agra. The total sample size of the study was 18 diabetic non insulin dependent respondents. The subjects were divided in two groups (Experimental n_1 =9 and control group n_2 = 9). In the present study, more females were found to be suffering from type 2 diabetes than males. Amla powder and turmeric powder was consumed by experimental group diabetic respondents for 45 days. Fasting blood sugar level of experimental group was significant on 15th day, 30th day and 45th day while post prandial blood sugar level were statistically significant (p<0.05). NSI diet calculator and website www.nutrispoon.in (2014) was used for calculating 24 hour diet recall of both experimental and control group.

Key words: Middle aged, Amla powder, Turmeric powder, Non-insulin dependent diabetics, Fasting, Post prandial blood sugar level.

INTRODUCTION

Diabetes is a chronic disease that occurs either when the pancreas does not produce insulin or when the body cannot effectively use the insulin it produces. Ayurvedic herbs have become a subject of interest because of their beneficial effects on human health. Several plant extracts have been examined for their anti-diabetic properties in an attempt to recognize alternative treatment strategies⁴. Amla being the richest source of ascorbic acid that is preserved by the presence of galleoellagi tannis, may be used as a supportive therapy for diabetes and other diseases⁷. Singh *et al.*,⁵ reported that amla is richest source of vitamin C. Vitamin C content of amla increases in the sun dried amla for example 100 gm. of fresh amla gives 600 mg of Vitamin C, then when it is sundried, its content increases to 1500 to 1600 mg.

Cite this article: Yadav, P., Gupta, A. and Chopra, N., Effect of Amla Powder and Turmeric Powder Consumption on Middle Aged (40-59 YEARS) Non-insulin Dependent Diabetics, *Int. J. Pure App. Biosci.* **6(3):** 70-76 (2018). doi: http://dx.doi.org/10.18782/2320-7051.6438

Yadav et al

Curcumin has been shown to improve the symptoms associated with diabetes. The efficacy of curcumin has been widely observed in reducing various diabetic secondary complications such as diabetic nephropathy⁶, retinopathy² and wound healing³.

OBJECTIVES

- 1. To study the demographic characteristics of middle aged (40-59 years) patients suffering from non-insulin dependent diabetes mellitus.
- 2. To assess and compare the life style characteristics of experimental and control group non-insulin dependent middle aged diabetic subjects.
- 3. To assess and compare the dietary pattern of experimental and control group non-

insulin dependent middle aged diabetic subjects.

4. To study the effect of amla powder and turmeric powder consumption on fasting and postprandial blood sugar level of middle aged diabetic subjects.

MATERIAL AND METHODS

The methodological aspects of the study are discussed under the following heads:

A. SELECTION AND PROCUREMENT OF THE HERBS

Fresh amla fruit was procured from Sabji mandi of Moti katra, Agra. Total raw amla procured was 10kg.Dehydrated turmeric was procured from Rawat pada market, Agra. Total dehydrated turmeric procured was 1.25kg.

DEHYDRATION OF HERBS

a. Dehydration of Amla: Fresh amla fruit Washing 2 to 3 times Washing 3 to 4 minutes Blanching 3 to 4 minutes Separation of seed and pulp Cut into small pieces Spread out on white cotton cloth Covered with malmal cloth Dehydration for 16-18 days Finely grinded Sieved W

Kept in airtight container before packaging

b. Dehydration of turmeric

- Dehydrated turmeric procured from market Coarsely broken in small pieces Finely grinded Sieved V
- Kept in airtight container before packaging

No. of Packets405Weight of packets2.5gm

screened

F. DEVELOPMENT OF THE SCHEDULE:

The schedule consisted of the following sections: General information, family background and history of diabetes mellitus, general health, life style, symptoms related to diabetes, dietary Intake, glucose testing of subjects, physical activity, medication, medical care.

G. STANDARDIZATION OF TOOLS AND TECHNIQUES USED IN THE STUDY

Glucometer was standardized before using it on the research respondents. Different recipes were standardized for taking 24 hour diet recall using different utensils.

a. Glucometer: Johnson and Johnson one touch select simple blood glucose

monitoring system was standardized from medical store.

Steps for standardization of glucometer are as follows:

- **Step 1:** Set the battery of glucometer.
- **Step 2:** Set the strip in the glucometer.
- Step 3: Pricked finger.
- **Step 4:** When glucometer shows the sign of blood drop, it was ready to enter the sample.
- **Step 5:** Record the readings i.e. fasting and post prandial blood sugar level.
- **b.** Recipes for 24 hour diet recall : Dry vegetable, jhol vegetable, gravy vegetable, pulse, whole pulse and chappaties were standardised for the purpose of taking dietary intake.

diabetic respondents $(n_2=9)$ were randomly assigned to control group.

D. SCHEDULE PREPARATION FOR ADMINISTRATION OF AMLA POWDER AND TURMERIC POWDER

After screening of 18 diabetic respondents, out of them 9 diabetic repondents were selected randomly for the purpose of amla and turmeric powder feeding trial. Research was started from 1 february 2016 (stability period) and after 15 days, feeding of amla powder and turmeric powder was started and continued regularly for 45 days.

E. PACKAGING OF HERBS FOR FEEDING TRIAL IN EXPERIMENTAL GROUP:

TURMERIC POWDER

405

2.5

divided in two groups (experimental and E. PACKAGING OF HERI

For experimental group feeding trial turmeric powder and amla powder were packed in small packets.

for

nine

AMLA POWDER

Int. J. Pure App. Biosci. 6 (3): 70-76 (2018)

Yadav *et al*

of

reason

Multistage

 $(n_1=9)$

were

B. SELECTION OF LOCALE

convenience for the investigator.

C. SCREENING OF SUBJECTS

stratified

selecting

The study was carried out in the area of Moti

Katra and Sheetla gali area of Agra. The

technique was used for screening of diabetic

respondents. Door to door survey was carried

out for screening of diabetic respondents.

Total number of selected diabetic respondents

was 22. Out of them, 18 diabetic respondents

were randomly selected for the purpose of

present research. Diabetic respondents were

control group). Nine diabetic respondents

randomly

experimental group and remaining

these

random

areas

was

sampling

Int. J. Pure App. Biosci. 6 (3): 70-76 (2018)

AMOUNT OF RAW VEGETABLE AND COOKED VEGETABLE				
RECIPES	RAW VEGETABLE COOKED			
	(gm)	VEGETABLE (gm)		
Dry vegetable(gm)	250	200		
Jhol vegetable(gm)	250	225		
Greavy vegetable(gm)	200	185		
Moong dal(gm)	50	150		
Rajma(gm)	50	200		

After the standardization of vegetables, pulse and whole pulse, different sizes of bowls (A,B,C,D) were used for calculating the dietary intake.

RECIPIES	BOWLS			
	Α	В	С	D
Dry vegetable(gm)	50	75	100	125
Jhol vegetable(gm)	100	125	150	175
Greavy vegetable(gm)	100	125	150	175
Moong dal(gm)	100	150	200	250
Rajma(gm)	100	150	200	250

Chapaties : For the standardization of chapaties , different types of cut-outs were made.

WHEAT FLOUR	CHAPATIES(gm)					
(gm)	A B C D					
RAW WEGHT (gm)	25	35	45	55		
COOKED WEIGHT	35	45	55	65		
(gm)						

H. ADMINISTRATION OF AMLA POWDER AND TURMERIC POWDER After completing phase II, administration of amla powder and turmeric powder was started. This section consisted of following steps:

STEPS	DAYS	ADMINISTRATION OF AMLA POWDER AND TURMERIC POWDER
1	Before 15 th	Stability period without administration of amla powder and turmeric
	day	powder
2	0 day	Starting the feeding trial of selected experimental respondents
3	15 th day	2 nd part of feeding trial
4	30 th day	3 rd part of feeding trial
5	45 th day	4 th part of feeding trial

I. MEASUREMENT OF FASTING AND POST PRANDIAL BLOOD SUGAR ON EVERY 15TH DAY :

Glucometer was used for the measurement of fasting and post prandial blood sugar level. Copyright © May-June, 2018; IJPAB

Testing of fasting and post prandial blood sugar level was taken for both control and experimental group.

Yadav <i>et</i>	t al	Int. J. Pure App. Bios	ci. 6 (3): 70-76 (2018)	ISSN: 2320) – 7051
		BLOOD SUGA	AR LEVEL mg/dl		
	Day	Time	Fasting	Post prandial	
	Before 15 th day				
	0 day		-		
	15 th day				
	30 th day		_		
	45 th day				

J. 24 HOUR DIETARY RECALL FOR 7 CONSECUTIVE DAYS

During the research, 24 hour dietary recall was taken for both groups (experimental and control) using standardized recipes, utensils and cut-outs. First all the cooked amounts were changed into raw amount and then NSI diet calculator was used for calculating the nutrients from raw amounts. Nutrispoon website was also used for calculating dietary intake of respondents. For dietary analysis, first all the data was converted to raw form and then entered in NSI diet calculator. The following nutrients were calculated: Energy (kcal), protein (gm), fat (gm), zinc (mg), calcium (mg), phosphorous (mg), vitamin A (mcg), thiamine (mg), riboflavin (mg), niacin (mg), vitamin C(mg), folic acid iron(mg), (mcg) and sodium(mg).For the calculation of carbohydrate, Indian Council of Medical Research's exchange list (2012) was used.

K. DIETARY ANALYSIS

RESULT AND DISCUSSION

1. Distribution of the non-insulin dependent diabetics according to comparison of blood sugar level of experimental and control group:

Fasting Dlagd	Experimental Group	Control Group				
Fasting Blood	Mean±SD	Mean±SD	t-Test	p-value		
Glucose Level	(mg/dl)	(mg/dl)				
Before 15 th Day	270.00±92.52	205.33±64.06	0.3010	0.3204		
Starting Day	267.89±90.30	198.78±98.27	2.2250	0.7594		
15 th Day	245.33 ±9.64	152.56±74.28	3.7104	0.0260*		
30 th Day	217.56 ±94.53	162.89±58.59	5.3292	0.0101*		
45 th Day	213.56 ± 85.84	212.11±68.15	4.4510	0.0100*		
*This result is Statistically significant at $p < .05$.						
Post Prandial	Experimental Group	Control Group				
Blood Glucose	Meen+SD (mg/dl)	Mean+SD	t-Test	p-value		
Level	Mean±5D (ing/ui)	Witcall±SD				
Before 15 th Day	331.11±93.90	319.56±128.26	0.2740	0.5790		
Starting Day	326.11±72.62	295.11±101.89	2.0209	0.4392		
15 th Day	288.78 ± 85.05	269.22±95.84	1.5623	0.1093		
30 th Day	255.22 ±83.31	260.56±99.87	3.6906	0.0141*		
45 th Day	269.33 ±91.94	365.44±77.78	3.9781	0.0124*		

Above table reveals distribution of the noninsulin dependent diabetics according to comparison of blood sugar level of experimental and control group statistically significant comparison of fasting blood sugar of both group was observed at 15th day, 30th day and 45^{th} day of the feeding trial. Statistically significant comparison of post prandial blood sugar of both groups was observed at 30^{th} day and 45^{th} day of the feeding trial.

Copyright © May-June, 2018; IJPAB

2. Distribution of the non-insulin dependent diabetics according to correlation between fasting and post prandial blood sugar level of experimental group:

Fasting blood sugar level (mg/dl)					
	Mean ± St. Deviation (mg/dl)	Correlation Coefficient	R-Test Value	p-value	
Before 15th Day	270±92.52				
0 Day	267.89±90.3				
15th Day	245.33±97.64	0.979	0.950	0.001*	
30th Day	217.56±94.53	0.951	0.933	0.002*	
45th day	213.57±85.31	0.901	0.867	0.002*	

*Statistically significant at p<0.05

Post Prandial blood sugar level (mg/dl)					
	Mean±St. Deviation	Correlation	R-Test	p-value	
	(mg/dl)	Coefficient	Value	P · ·····	
Before 15th Day	331.11±93.9				
0 Day	326.12±72.62				
15th Day	288.78±85.05	0.901	0.783	0.001*	
30th Day	255.22±83.31	0.857	0.816	0.007*	
45th day	269.33±91.94	0.856	0.971	0.001*	

*Statistically significant at p<0.05

Above table explains, by normal standards, the association between the reading of Fasting and Post Prandial Blood glucose with 15th,30th and 45th days would be considered statistically significant and positive.

CONCLUSION

On the basis of the results obtained from the present study entitled "Effect of amla

Copyright © May-June, 2018; IJPAB

powder and turmeric powder consumption on middle aged (40-59 years) non-insulin diabetics" it can be concluded that in middle age prevalence of type 2 diabetes was very high. More females suffered from type 2 diabetes than males. Out of the 18 diabetic respondents, 12 females suffered from type 2 diabetes.Fasting and post prandial blood sugar level was lowered with the consumption of

Int. J. Pure App. Biosci. 6 (3): 70-76 (2018)

Yadav *et al*

amla powder and turmeric powder for 45 days. Fasting blood sugar level was significant at 15^{th} day, 30^{th} day and 45^{th} day while post prandial blood sugar level was significant at 30^{th} and 45^{th} day. On 45^{th} day both fasting and post prandial blood sugar level were statistically significant (p < .05).

Mean and standard deviation of fasting and post prandial blood sugar level of experimental group respondents on starting day and 45th day were 267.89±90.30 mg/dl ,213.56±85.84 & 326.11±72.62 mg/dl & 269.33±91.94 mg/dl respectively.

REFERENCES

- 1. Gupta, A., Pictorial portion size of recipes. Retrieved from http://www..nutrispoon.in/pictorialportio nsize. (2014).
- Kowluru, R., A., & Kanwar, M., Effects of curcumin on retinal oxidative stress and inflammation in diabetes, *Nutrition & Metabolism*, 4: 1-8 (2007).
- Panchatcharam, M., Miriyala, S., Gayathri, V.S. & Suguna, L.,Curcumin improves wound healing by modulating collagen and decreasing reactiveoxygen species, *Molecular and Cellular Biochemistry*, 290(1-2): 87-96 (2006).

- Singh, K.P., & Verma, B., Role of ayurvedic herbs in madhumeha (Diabetes mellitus). *International Journal of Ayurvedic and Herbal medicine*, 3(2): 1136-1144 (2013).
- Singh,E., Sharma, S., Pareek, A., Dwivedi, J., Yadav, S., & Sharma, S., Phytochemistry, traditional uses and cancer chemopreventive activity of Amla (*Phyllanthusemblica*): The Sustainer. *Journal of Applied Pharmaceutical Science* 02(01): 176-183 (2011).
- Sharma,S., kulkarni, S.K., Agarwal, J.N. & Chopra, K., Curcumin improves wound healing by modulating collagen and decreasing creative oxygen spices. *Molecular and Cellular Biochemistry*, 290: 87-96 (2006).
- Walia, K., & Boolchandani, R.,Role of amla in Type 2 Diabetes Mellitus - A Review. *Research Journal of Recent Sciences*, 44(ISC-2014): 31-35 (2015).
- World Health Organization. Fact Sheet No.312: What is Diabetes? Retrieved from: http:// www.who.iny/mediacentre/factsheets/fs3 12/en/ (2009).